Temps, cinématique, dynamique newtonienne


Quantité de mouvement, mouvement dans un champ de pesanteur uniforme, effet Doppler, énergie mécanique.



énantiomère, synthèse peptidique, diagramme de prédominance, réaction d'addition, diffraction, énergie mécanique, énergie potentielle élastique, énergie cinétique.



Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité).





Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme).
Connaître l’'expression vectorielle de la force d'’interaction gravitationnelle (avec un vecteur unitaire à rajouter sur un schéma).
Démontrer que, dans l'’approximation des trajectoires circulaires, le mouvement d’'un satellite, d'’une planète, est uniforme. Établir l’'expression de sa vitesse et de sa période.
Identifier les situations physiques où il est pertinent de prendre en compte le phénomène de diffraction.



Connaitre le domaine de l’audible en fréquence pour l’oreille humaine.

Définir une onde mécanique.

Définir une onde longitudinale, une onde transversale.

Exploiter l’expression du décalage Doppler de la fréquence dans le cas des faibles vitesses.

Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité).

Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes.



  Connaître et exploiter la relation de Planck (1ère S).

  Connaître les limites dans le vide du domaine visible et situer les rayonnements infrarouges et ultraviolets (1ère S).

  Évaluer des ordres de grandeurs relatifs aux domaines microscopique et macroscopique (Relation entre masse molaire d’une espèce, masse des entités et constante d’Avogadro).



Connaître et exploiter les expressions de l’énergie cinétique, de l’énergie potentielle de pesanteur et de l’énergie mécanique (1ère S).

Exploiter le principe de conservation de l’énergie dans des situations mettant en jeu différentes formes d’énergie (1ère S).

Analyser les transferts énergétiques au cours d’un mouvement d’un point matériel.

Savoir représenter les forces appliquées à un système sans souci d’échelle.

Identifier si un travail est moteur, résistant ou nul.0  Établir et exploiter les expressions du travail d’une force constante.



Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme).
Connaître et exploiter la deuxième loi de Newton ; la mettre en oeuvre pour étudier des mouvements dans un champ de pesanteur.
Maîtriser l'usage des chiffres significatifs et l'écriture scientifique. Associer l'incertitude à cette écriture.
Exprimer le résultat d'une opération de mesure par une valeur issue éventuellement d'une moyenne et une incertitude de mesure associée à un niveau de confiance.



Choisir un référentiel d'étude.
Connaître et exploiter les trois lois de Newton ; les mettre en oeuvre pour étudier des mouvements dans un champ de pesanteur uniforme.
Extraire et exploiter des informations sur les ondes de matière et sur la dualité onde-particule. Définir la quantité de mouvement d’un point matériel.
Connaître et utiliser la relation de de Broglie p = h/λ



  • Définir la quantité de mouvement d'un point matériel.
  • Exploiter les équations horaires du mouvement ou l'équation de la trajectoire pour répondre à un problème donné


Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité). 1S: loi de gravitation, champ de gravitation. Mettre en oeuvre la deuxième loi de Newton pour étudier des mouvements dans un champ de pesanteur uniforme. Établir l'expression de la vitesse et de la période d'un satellite.

Points
9 points
Durée
1 heure 30 minutes

Interpréter les transferts thermiques dans la matière à l’échelle microscopique.
Exploiter la relation entre le flux thermique à travers une paroi plane et l’écart de température entre ses deux faces
Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier un mouvement dans un champ de pesanteur uniforme.
Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité).



énergie d'un photon E = h.c/λ
Connaître et exploiter la deuxième loi de Newton ; les mettre en oeuvre pour étudier des mouvements dans un champ de pesanteur uniforme.
Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel.



Connaître la définition de l’année de lumière et son intérêt (2nde)
Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité).
Connaitre l’expression de la force d’interaction gravitationnelle (2nde).
Définir le système étudié et savoir choisir un référentiel d’étude adapté au mouvement étudié.
Définir et reconnaître des mouvements (circulaire uniforme ici) et donner les caractéristiques du vecteur accélération.
En utilisant la 2ème loi de Newton, démontrer que dans l’approximation des trajectoires circulaires, le mouvement d’un sa



Connaître et exploiter les trois lois de Newton ; les mettre en oeuvre pour étudier des mouvements dans un champ de pesanteur uniforme.
Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel. Water jump