Temps, cinématique, dynamique newtonienne


Identifier les éléments d'une chaîne de transmission d'informations.
Évaluer l'affaiblissement d'un signal à l'aide du coefficient d'atténuation.
Caractériser une transmission numérique par son débit binaire.
Exploiter l'expression du décalage Doppler de la fréquence dans le cas des faibles vitesses.
Savoir que l'importance du phénomène de diffraction est liée au rapport de la longueur d'onde aux dimensions de l'ouverture ou de l'obstacle. Identifier les situations physiques où il est pertinent de prendre en compte le phénomène de diffraction.



Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel.
Connaître et exploiter la deuxième loi de Newton ; la mettre en  œuvre pour étudier des mouvements dans un champ de pesanteur uniforme.



Exploiter l'expression du décalage Doppler de la fréquence dans le cas des faibles vitesses. Utiliser des données spectrales pour illustrer l'utilisation de l'effet Doppler comme moyen d'investigation en astrophysique.
Démontrer que, dans l'approximation des trajectoires circulaires, le mouvement d'un satellite, d'une planète, est uniforme.


Savoir que l'importance du phénomène de diffraction est liée au rapport de la longueur d’onde aux dimensions de l’ouverture ou de l’obstacle.
Identifier les situations physiques où il est pertinent de prendre en compte le phénomène de diffraction.
Extraire et exploiter des informations sur les ondes de matière et sur la dualité onde-particule. Connaître et utiliser la relation p = h/lambda.
Connaître et exploiter les trois lois de Newton ; les mettre en œuvre pour étudier des mouvements dans un champ électrostatique uniforme.



Connaître et exploiter les relations vectorielles F = q.E et P = m.g (1S)
Identifier la direction et le sens du champ électrostatique E dans un condensateur plan (1S)
Connaître et exploiter les trois lois de Newton ; les mettre en œœuvre pour étudier des mouvements dans des champs de pesanteur et électrostatique uniformes.
Établir et exploiter les expressions du travail d’une force constante (force de pesanteur, force électrique dans le cas d’un champ uniforme).
Analyser les transferts énergétiques au cours d’un mouvement d’un point matériel.



Exprimer une masse volumique (2nde).
Connaître l’expression de la force d’interaction gravitationnelle (numérique et vectorielle avec un vecteur unitaire à rajouter sur un schéma).
Démontrer que, dans l’approximation des trajectoires circulaires, le mouvement d’un satellite, d’une planète, est uniforme. Établir l’expression de sa vitesse et de sa période.
LA force


Connaître les trois lois de Kepler. Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité). Caractériser une transmission numérique par son débit binaire.
1S: Force d'attraction gravitationnelle, expression d'un champ de pesanteur.
Affiche du CNES sur la mission Rosetta


Choisir un référentiel d'étude. Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme) et donner dans chaque cas les caractéristiques du vecteur accélération.
Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel.
1S Relation Energie, puissance,durée.
Connaître et exploiter la relation entre la variation d'énergie interne et la variation de température pour un corps dans un état condensé.


Physique: Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme) et donner dans chaque cas les caractéristiques du vecteur accélération.
Connaître et exploiter la deuxième loi de Newton et la mettre en oeuvre pour étudier des mouvements dans un champ de pesanteur uniforme.
Chimie: Reconnaître les groupes caractéristiques dans les acides aminés. Utiliser la représentation de Cram. Reconnaître des espèces chirales à partir de leur représentation.



Connaître et exploiter la relation entre la période ou la fréquence, la longueur d'onde et la célérité. Extraire et exploiter des informations sur : - des sources d'ondes et de particules et leurs utilisations ; - un dispositif de détection.
Connaître et exploiter la relation entre retard, distance et vitesse de propagation (célérité).


Connaître et exploiter la seconde loi de Newton ; la mettre en œuvre pour étudier un mouvement dans un champ de pesanteur uniforme. Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel.



Connaître et exploiter la première loi de Newton. Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel.



Mouvement dans un champ électrostatique
Deuxième loi de Newton, équations horaires, équation de la trajectoire. Expérience de Millikan.
Extraire et exploiter des informations sur les ondes de matière et sur la dualité onde-particule. Connaître et utiliser la relation p = h/lambda. Identifier des situations physiques où le caractère ondulatoire de la matière est significatif.



Établir et exploiter les expressions du travail d'une force constante.
Analyser les transferts énergétiques au cours d'un mouvement d'un point matériel. Mouvement dans un champ de pesanteur.



Chimie:Connaître les règles de nomenclature des molécules organiques.
Physique: Connaître le principe de l'émission stimulée et les principales propriétés du laser.
Établir et exploiter les expressions du travail d'une force constante (force électrique dans le cas d'un champ uniforme).
Connaître et exploiter les trois lois de Newton ; les mettre en oeuvre pour étudier des mouvements dans un champ électrostatique uniforme.



Exploiter la troisième loi de Kepler dans le cas d'un mouvement circulaire.
Extraire l'information d'un texte.
Article du CLEA sur ce sujet


Connaître les trois lois de Kepler.
Connaître les principales propriétés du laser (directivité, monochromaticité, concentration spatiale et temporelle de l'énergie).
Émission et absorption quantiques.
Démontrer que, dans l'approximation des trajectoires circulaires, le mouvement d'un satellite, d'une planète, est uniforme. Établir l'expression de sa vitesse et de sa période.


Extraire et exploiter des informations sur l'absorption de rayonnements par l'atmosphère terrestre et ses conséquences sur l'observation des sources de rayonnements dans l'Univers.
Démontrer que, dans l'approximation des trajectoires circulaires, le mouvement d'un satellite, d'une planète, est uniforme. Établir l'expression de sa vitesse et de sa période.
Connaître les trois lois de Kepler
Utiliser des données spectrales pour illustrer l'utilisation de l'effet Doppler comme moyen d'investigation en astrophysique.

Points
7 points
Durée
1 heure 10 minutes

Résolution de problème. Eau et énergie. Pile à combustible.


Revivez le lancement d'Ariane V pour la mise en orbite du ravitailleur de l'ISS.
Un peu de musique à bord de l'ISS avec Chris Hadfield
Force d'attraction gravitationnelle, vitesse et période d'un satellite, quantité de mouvement, propulsion par réaction.


Synthèse sur l'histoire de la mesure du temps.


Définir et reconnaître des mouvements (rectiligne uniforme, rectiligne uniformément varié, circulaire uniforme, circulaire non uniforme) et donner dans chaque cas les caractéristiques du vecteur accélération.
Démontrer que, dans l'approximation des trajectoires circulaires, le mouvement d'un satellite, d'une planète, est uniforme.